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Summary. Diabatic and adiabatic potential energy curves have been determined 
for the complexation of beryllium cation with a water molecule, by means of 
multi-reference perturbation CI. The quasi-diabatic states correspond to Be2+H20 
and to nine charge transfer states (Be+H20+): at short beryllium-water distances 
the ground state is essentially Be2+H2 O, but at large distances several charge 
transfer states have lower energies. The nature of the curve crossings of the ground 
and lowest excited states in the [BeH20] 2+ system is clarified. The changes 
brought about by the presence of a second water molecule are investigated. 

Key words: Charge transfer - Beryllium ion - Beryllium water complex - Dia- 
batic states 

1. Introduction 

The determination of interaction potentials between metal ions and ligands is of 
considerable interest, mainly as a first step in understanding the structure and 
dynamics of ionic solutions (see for instance [1]). Pair potentials are normally 
used in Monte Carlo or Molecular Dynamics simulations, but in some cases 
sizeable contributions from higher order terms are found. The non-additivity of 
the potential is more important, both in absolute value and in percentage, for 
doubly or triply charged cations [2]. The interaction energy of such cations with 
electron donors contains a large charge transfer (CT) contribution, which is 
certainly non additive [3, 4]. In fact, all the most common metal cations with 
oxidation number n > 1, have an electron affinity (n-th ionisation potential, IP) 
larger than the first IP of water (12.615eV [5]); the only exceptions are 
Ca 2+, Sr 2+, Ba 2+. As a result, for many M"+H20 systems, the most stable state 
at large metal-water distances is a charge transfer state, M (n- 1)+H20+. Because 
of the electrostatic repulsion, the potential curve of the CT state goes up in 
energy as the metal-water distance decreases, thus crossing those of other states. 

An investigation of the crossings and avoided crossings involving the ground 
and lowest excited states of water-metal cation systems would help to clarify the 
nature of the interaction potentials to be adopted in the simulations. The 
potential curves and related nonadiabatic couplings would determine the charge 
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transfer probabilities for metal-water collisions in vacuo, or unimolecular decom- 
positions of charged complexes. The metal to water CT may also play a role in 
mediating the metal to metal CT (redox reactions) in solution. 

To begin with, we decided to investigate one of the simplest systems where 
such a situation occurs, the [BeH20] 2+ complex. The beryllium-water complexes 
have been the object of previous ab initio studies [3, 6-12] and of Molecular 
Dynamics simulations [7, 9]. Special attention has been paid to the non-additiv- 
ity problem [8-11], because a simulation based on two-body potentials gave a 
hydration number of six, in sharp contrast with the experimentally determined 
value of four [7]: the inclusion of a three-body term (water-beryllium-water) was 
effective in eliminating the discrepancy [9]. Although at least five charge transfer 
singlet states lie below the Be2+-H20 asymptote, only one has been theoretically 
studied [6]; no proper treatment of the avoided crossings between states of the 
same symmetry has been produced. 

In this paper, we present an ab initio SCF and CI determination of 10 singlet 
states of the [BeH20] 2÷ complex, from R(Be-O)= 2.1 a.u. to dissociation. In 
order to unravel the relationships between electronic states dissociating to 
different asymptotes, we determined quasi-diabatic states, by means of a tech- 
nique already devised and tested in our group [13, 14]. A comparison with the 
situation encountered when more than one water molecule interact with the 
beryllium cation concludes this work. 

2. Computational method 

SCF-CI calculations have been run for the [BeH20] 2+ system, at 14 different 
Be-O distances. No attempt was made to optimise the geometry of the ap- 
proachi~ng water molecule: previous works have shown that the OH bond lengths 
and HOH bond angle are not dramatically altered in the ground state of the 
complex [3, 8, 10]. The deformation energy of water was evaluated to 1.2% of the 
total interaction energy, in a 6-31G* SCF treatment [3]. The experimental 
geometry of neutral water~, ground state, was adopted throughout, with 
R(OH) = 1.8094 a.u. an d..d HOH = 104.51 ° [15]. However, a second set of calcula- 
tions were run, with HOH = 180 °, because it is known that the second ionised 
state of H20 (H20÷A2A1) is linear: the energy lowering, in going from the bent 
to the linear water geometry, is about 1 eV, as deduced from the difference 
between the vertical and the adiabatic (minimum to minimum) IP [5]. We only 
explored C2v geometries, with Be on the C2 axis of the water molecule: the 
approach along this direction yields the lowest energies in the ground state, when 
compared with other coplanar and non coplanar approaches [6]. 

The basis set here adopted is the 6-311G** [16], of triple-zeta quality in the 
valence shells, including the p shell of Be; polarisation functions are provided, d 
on O and Be with exponents 1.292 and 0.25 respectively, p on H, with exponent 
0.75. 

The closed shell SCF procedure should give, at large Be-O distances, the 
Be2+(1S)H20(X~AI) state, but it suffers from serious convergence problems for 
R(Be-O) > 8 a.u., because the last occupied orbital is localised on H20 or on Be 
in turn, for successive iterations. In order to avoid such difficulties, and to obtain 
a set of MOs less biased towards a particular electronic state, we adopted 
Nesbet's SCF procedure [17], with the following occupation numbers: 

n l  = i//2 = / ' / 3  = / ' / 4  = 2, n5 = n 6  = 5]3, n 7 = 2/3. 
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At large distances, the 5-th MO correlates with the al lone pair of oxygen, 
the 6-th with the bl p orbital of oxygen, and the 7-th with 2s of beryllium. 
Therefore, the above occupation numbers correspond to an average of three 
electronic configurations of interest in our work. In particular, it ensures proper 
degeneracy of the nu orbitals of linear H20 +. 

A Configuration Interaction follows, based on the multi-reference perturba- 
tion algorithm CIPSI [18-20]. The present application of CIPSI involved the 
following features. Three steps of selection of progressively enlarged variational 
subspaces were run, with thresholds t /=  0.05, 0.03 and 0.004. A final step, run 
with the diagrammatic version of the program [19], involved a three class 
partition of the CI space: the variational space (S) and the determinants (G) 
from which single and double excitations (P) are generated in the perturbation; 
G is a subspace of S, selected with the threshold qa = 0.01. The 4 states of A1 
symmetry required about 3500 to 5500 determinants in S, and 640 to 930 in G; 
less states and determinants were involved for other symmetrics. The diagram- 
matic version of the program employs the Moller-Plesset barycentric partition 
of the CI hamiltonian. The square norm of the first order correction of the 
wavefunction did not exceed 0.018, for any state and geometry, indicating a good 
degree of convergence of the iterative selection/perturbation procedure. 

Quasi-diabatic zeroth-order states I r/~ °)) were defined by a unitary transfor- 
mation T (°) of the CI eigenfunctions ~o) in the S subspace [13, 14]: 

i = [ , (o) )  r(o), ( l )  

The T (°) matrix is chosen so as to maximise the superposition of the tl~ °) 
functions with a set of reference functions Ri: 

E [(t/~ °) [ R, )]2 = max (2) 
i 

The Ri functions are, by construction, very simple diabatic functions, normally 
amenable to valence-bond structures, and not necessarily orthogonal to each 
other. Their quality, and in particular their adequacy to represent the electron 
correlation, is irrelevant to the accuracy of the calculation; in fact, the gist of the 
method is to find a set of functions, the t/l °), which resemble as much as possible 
the diabatic references, and in the same time are well correlated, in so far as they 
span the same subspace as the adiabatic functions ~k~ °). The zeroth-order elec- 

• • • ( o )  ( o )  ~ ( o )  tronic hamiltonian in the dlabaUc basis, H a = ( r  h [Ygetlq) ), is corrected to the 
second order according to the Quasi Degenerate Perturbation Theory, QDPT 
[141: 

H = H (°) + H (2) (3) 

and diagonalised to get the final adiabatic energies Uk: 

HTk = Uk Tk (4) 

The columns Tk of the matrix T, usually not very different from T ~°), contain the 
expansion coefficients of the electronic eigenstates in a quasi-diabatic basis; as 
such, they convey qualitative information on the composition of the adiabatic 
states, bearing on chemical intuition, but firmly based on accurate calculations. 

In the present work, we chose to study 10 singlet states of the [BeH20] 2+ 
2 +  1 2 1 + 2  + 2  system, dissociating as Be ( S, ls ) and H20(X A1), or Be ( S, 2s), Be ( P, 2p) 

and HzO+(X2B1), HzO+(,'I2AI), H20+(/~2B2). Accordingly, the reference func- 
tions R,. were built as antisymmetrised products of subsystem wavefunctions, as 
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Be o~, H Symmetry State 

Be++ 

G 

G 

G 

A1 

B1 

A1 

Al 

B 1 >- 

A2 

A1 t 
B1 

B2 

BJ*(1S) H20(X1A1) 

Be+(2S) H20+(~2B0 

Be+(2S) HzO+(h,2A0 

Be*(2p) H20*(,X2B0 

Be+(2P) H20+(,~2A1) 

B2 Be*(2S) H20*(B2B1) 

Fig. 1. Diabatic or reference 
states for the [BeHzO] 2+ 
system. The 2s and 2p orbitals 
of Be are shown, when 
occupied; for the water 
molecule, the p(bl) orbital of 
oxygen and the n(al) lone 
pair are always shown; only 
in the bottom line the b 2 
combination of OH a 
bonding orbitals is also shown 
(here singly occupied, doubly 
occupied for all other states). 
One or two dots indicate 
single or double occupancy 

indicated in Fig. 1. A G r a m - S c h m i d t  orthogonalisation among the R i functions 
preceded their use in the maximum overlap algorithm. The molecular orbitals 
defining the reference functions were obtained from SCF calculations for the 
isolated water molecule and beryllium cation. The values of  the (~/~°)lR;) 
overlaps are indicators of  the adequacy of the reference functions: if they are 
close to 1, each R; identifies without ambiguity the corresponding diabatic 
function. In the present case, the norms of the (r/~ °) I R i )  overlaps have high 
values (0.8 to 0.95) for most states and geometries; only one of the A~ references, 
Be+(2P)H20+(AZA1), fails at short distances ( R ( B e - O ) =  3.5 a.u.), because the 
fourth state undergoes an avoided crossing, quite evident also in Figs. 2 and 3. 
The intruder state, Be+(2P)HzO+(/~ZB2), might have been included in the 
reference set, by an ad hoe modification [13] of  the diabatisation method; 
however, this was not done, because the large overlaps of  the other states made 
the identification of the diabatic functions quite unambiguous anyway. 

3. Results and discussion 

In Table 1 we show the vertical charge transfer energies resulting from our 
perturbation CI treatment for R ( B e - O ) =  ~ ,  along with experimental values. 
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Table 1. Energies of  the [BeH20] z+ system, at infinite separation, starting from the BeZ+H20 
asymptote ( - 89.896862 a.u.) 

State Symmetry Energy (eV) Experimental b 

This work a 

Be2+(1S)H20(XI A1) A 1 O. O. 
Be+(2S)HzO+(~2Bt ) B I - 6.06 - 5.5 _+ 0.1 
Be+(ZS)HzO+(A2A1 ) A I -3 .80  --3.4 __+ 0.1 
Be+(2p)H20+(XZB0 A j, A 2, B 1 -2 .06  - 1.6 ___ 0.1 
Be+(2p)H20+(AZA1) AI, Ol, 02 +0.19 +0.5 + 0.1 
Be+(ZS)HzO+(B2B2) B 2 +0.48 +0.5 _+ 0.2 

a Fixed water geometry, from Ref. [ 15] 
b Second IP of  beryllium (18.211 eV) and Be+(2P ~ 28)  excitation energy (3.959 eV) from Ref. [23]; 
vertical IPs of  water, with experimental uncertainties, from Ref. [5] 

The total CIPSI energy for the Be2+H20 state is -89.89686a.u.,  hereafter 
assumed as the zero of the energy scale. Closed shell SCF yields -89.65639 a.u., 
to be compared with the estimated HF limit of -89.6788 _+ 0.0010 a.u. [21, 22]. 
The comparison of asymptotic energy values is the only way to assess the 
accuracy of our calculations, in the absence of experimental measurements 
concerning the interaction potentials. The one previous determination of the CT 
energy difference, Be 2+ + HgO~Be+(2S)  + H 2 0 ( A Z A I ) ,  based on a MRDCI 
treatment [6], gave AE = -2.1  eV (cfr. third row of Table 1). 

Table 2 reports the [BeH20] 2+ complexation energies, without zero point 
energy correction, obtained with different theoretical treatments. They all refer to 
the Be2++ H20 asymptote, although this is not the lowest state at infinite 
separation. We can safely assume that our results are among the most accurate, 
as far as the 6-311G** basis set is more flexible than any other previously 
employed for beryllium-water complexes, and an exhaustive treatment of the 
electron correlation has been carried out. One state, single point calculations at 
the 3-21G* optimised geometries [10] give practically the same result; at this 
level, the basis set superposition error has been evaluated by means of the 
counterpoise method in 3.3 kcal/mol (SCF) and 3.8 kcal/mol (CIPSI). The most 
complete study of [Be(H 2 0 ) n ]  2 + complexes is given in Ref. [ 10]; unfortunately, 
it employed the 3-21G and 3-21G* basis sets, which overestimate the binding 
energy of a single water molecule by some 15 to 25 kcal/mol; a similar trend had 
already been put in evidence for Li + and Na + complexes [24]. The SCF 
calculations, on which the Molecular Dynamics simulations were based [7-9], 
yield a complexation energy in better agreement with ours, although they employ 
a basis set somewhat less flexible than 3-21G*. In fact, the Huzinaga-Dunning 
D Z  basis for Be does not contain p orbitals; only one set of p, and no d, 
functions, were introduced, with the role of polarisation functions. This feature 
may lead to underestimate the CT contribution (see below) and therefore the 
complexation energy. 

In the C2v point group, we treated four states belonging to the A 1 irrep, one 
to A2, three to B 1 and two to B2. The closed shell BeZ+H2 O state belongs to AI. 
Figure 2 shows the A1 diabatic energies, Hii, Eq. (3), as functions of R(Be-O), 
with a bent water molecule (experimental geometry). Figure 3 shows the corre- 
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Table 2. Complexation energies of Be2+H2 O, D~, from different theoretical treatments (kcal/mol). 
No zero point energy corrections. Be-O bond distances in a.u. 

Reference Method Basis set H20 geom. relax. R(Be-O) D e 

This work CIPSI 6-311G** NO 2.839 146.4 
This work" SCF 6-311G** YES 2.840 146.7 
This work a SCF without CT b YES 2.840 115.4 
This work a CIPSI 6-311G** YES 2.840 145.3 
This work a CIPSI without CT b YES 2.840 l 10.4 
[8] SCF STO-3G YES 2.772 205.3 
[8] SCF DZ ° YES 2.925 145.3 
[ 7] SCF DZ + poF NO d 2.903 136.7 
[8] SCF DZ + polc YES 2.903 135.6 
[8] SCF TZ + poF YES 2.814 147.0 
[8, 10] SCF 3-21G YES 2.867 169.0 
[ 10] MP3 3-21G YES e 2.867 172.9 
[ 10] S CF 3-21 G* YES 2.840 161.2 
[ 10] MP3 3 -21G * YES e 2.840 168.3 
[6] SCF with CT r NO 2.90 134.5 
[6] MRDCI with CT r NO 2.90 129.1 
[6] SCF without CT r NO 3.00 111.7 
[ 3] SCF 4-31G YES 2.876 156.5 
[3] SCF -}- CP g 4-31G YES 2.891 152.2 
[3] SCF 6-31G* YES 2.835 148.6 
[3] SCF +CP g 6-31G* YES 2.837 145.6 

a Single calculation, one state, with 3-21G* geometry [10] 
b 6-311G** on O and H, only the two inner s functions on Be 
c Double-zeta and triple-zeta Huzinaga-Dunning basis sets, originally without p functions on Be; 
+pol means that d functions are added on O and p functions on Be and H 
a R(Be-O) and D e deduced from the analytic potential used in MD simulations [7] 
e SCF geometry 
rO(4s, 3p, ld), H(2s, lp). The basis set "with CT" on Be(4s, 2p) allows to accommodate a third 
electron, the basis "without CT" (2s functions only) does not 
g Counterpoise correction of the basis set superposition error 

s p o n d i n g  a d i a b a t i c  energies ,  Uk, Eq .  (4). In  genera l ,  all the  C T  d i aba t i c  s tates  
h a v e  repu ls ive  c o u l o m b i c  po ten t i a l s ,  whi le  the  Be2+H2 O curve  is a t t r ac t ive ,  
because  o f  the  b e r y l l i u m  c h a r g e - w a t e r  d ipo l e  in t e rac t ion .  T h e r e f o r e ,  the  
B e 2 + H 2 0  state  u n d e r g o e s  t w o  a v o i d e d  cross ings ,  one  a r o u n d  R ( B e - O )  = 14 a.u. ,  
w i th  Be+(2P)H20+(J?ZBL) ,  and  a n o t h e r  one  a r o u n d  8 a.u. ,  w i th  
B e + ( Z S ) H 2 0 + ( A Z A 1 ) .  T h e  f o r m e r  has  a m i n i m u m  ene rgy  gap  o f  a b o u t  
0.0035 eV, the  l a t t e r  o f  0.3 eV: the  la rge  d i f ference  b e t w e e n  the  t w o  va lues  is 
m a i n l y  due  to  the  r a p i d  dec rease  o f  the  s t a t e - to - s t a t e  i n t e r a c t i o n  m a t r i x  e l emen t s  
H i j  wi th  the  B e - O  dis tance .  A Be 2+ ion  a n d  a w a t e r  mo lecu l e ,  f reely  a t t r a c t e d  
a l o n g  the  Czv m i n i m u m  ene rgy  pa th ,  w o u l d  go  t h r o u g h  b o t h  a v o i d e d  cross ings ,  
w i th  M a s s e y  p a r a m e t e r s  [25] ~ = 0.005 a n d  42 = 3.8, respect ive ly .  T h e  o u t e r  
c ross ing  is t h e r e f o r e  classif iable  as essent ia l ly  " d i a b a t i c "  a n d  the  i nne r  one  as 
" a d i a b a t i c " ,  b u t  in b o t h  cases  s izeable  t r an s i t i on  p robab i l i t i e s  occur :  c h a r g e  
t r ans fe r  c ross  sec t ions  fo r  w a t e r - b e r y l l i u m  c a t i o n  co l l i s ions  are  ce r t a in ly  n o t  
negl ig ible .  
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Fig. 2. Diabatic energies for 
the A~ states as functions of 
R(Be O). Water molecule in 
the experimental geometry. 
The zero of the energy scale 
corresponds to the Be2+H20 
asymptote 
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Fig. 3. Adiabatic energies for 
the A 1 states as functions of 
R(Be-O). Water molecule in 
the experimental geometry. 
The zero of the energy scale 
corresponds to the Be2+H20 
asymptote 

The adiabatic dissociation of [BeH20] 2+ in the C2v symmetry leads to 
Be--(eS)H20--(.42A1), with D e ----58.7 kcal/mol and an activation barrier deter- 
mined by the lowest avoided crossing, AE* = 125.2 kcal/mol. However, at large 
Be-O distances, the lowest state is Be+(2S)H20+()~2BI), and belongs to another 
irrep, B~. If this dissociation limit is considered, D e is further lowered to only 
6.8kcal/mol. The lowest B1 and A~ energy curves cross each other at 
R(Be-O) = 6 a.u., 92.8 kcal/mol above the A~ minimum. The crossing is actually 
a conical intersection, because displacing Be out of the H20 plane eliminates the  
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Fig. 4. Diabatic energies for 
the B 1 states as functions of 
R(Be-O). Water molecule in 
the experimental geometry. 
The zero of the energy scale 
corresponds to the Be2+H2 O 
asymptote 

Fig. 5. Diabatic energies for 
the A 2 and B 2 states as 
functions of R(Be-O). Water 
molecule in the experimental 
geometry. The zero of the 
energy scale corresponds to 
the Be2+H2 O asymptote 

separa t ion  between the A~ and  B l manifolds .  In  coll isions or  half-coll is ions,  
ano the r  channel  is open,  leading to  charge- t ransfer  with low-energy products .  

F igures  4 and  5 show the d iaba t ic  energies of  B],  A 2 and B2 states. They  are  
all d o m i n a t e d  by  cou lomb  repuls ion,  as a l ready  seen for  the CT A1 states. 
However ,  these curves,  with two except ions,  are less repulsive at  shor t  d is tances  
( R ( B e - O )  = 3 to 4 a.u.), than  impl ied  by  the 1/R law. The  s tabi l i sa t ion  can be 
main ly  a t t r ibu ted  to dat ive  bonding,  involving the n orb i ta l  on  oxygen and  2s or  
2p~ on  beryl l ium. The  two over lapp ing  orbi ta ls  on different centers con ta in  one, 
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two, or three electrons, depending on the electronic state (see Fig. 1): the A] and 
A 2 combinations of Be+(2P) and H20+()~ZBI) are the most stabilised (less 
repulsive) states, and both have two electrons in the dative bond. The only two 
states which do not benefiit from a bonding are Be+(2S)H20+(~eA1) and 
Be+(2P)HzO+(A2A]), both in the A 1 irrep, although they also have two electrons 
in the same orbitals. To understand this, notice that the distinction between the 
two states under consideration and Be2+(LS)H20(X]A~) is not sharp, as far as 
the overlap between the n orbital on oxygen and 2s or 2pz on beryllium is not 
negligible: in fact, at short Be-O distances, the reference functions representing 
these states partially overlap, while all others do not, having a different symmetry 
or at least a different occupation of the b] orbitals. Dative bonding stabilises the 
Be2+(IS)H20(X]A~) state, but the orthogonality constraint prevents the two 
other states to lower their energy by covalent interactions involving the same 
orbitals. As a result of different extents of stabilisation, the repulsive diabatic 
curves are not parallel, and several crossings occur; the adiabatic curves for B~, 
A 2 and B2 states are very close to the diabatic ones, except that the crossing of 
the B2 states at R(Be-O) ~- 8 a.u. is "avoided". 

The above discussion also shows that important physical effects such as 
charge transfer and polarisation of the water molecule cannot be perfectly 
separated: in fact, an increase of the electron density in the n orbital of oxygen 
(polarisation), at short distances, partially implies a larger degree of charge 
transfer, because of the overlap of O and Be orbitals. 

The )~2B 1 and ~z~ZA 1 s t a t e s  of H 2 0  + become degenerate (2/7,) in the linear 
geometries: the energy of the former increases by about 1 eV with respect to 
vertical ionisation, while that of the latter decreases by the same amount [5]. As 
a result, the potential energy curves for A~ states with linear water, shown in Fig. 
6, are rather different from those of Fig. 3. In particular, the linear water 
geometry is preferred to the bent one for R(Be-O) > 6 a.u., in the lowest Al 
state: the dissociation limit is lowered to 26.3 kcal/mol (from 58.7). 
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Fig. 6. Diabatic energies for 
the A 1 states as functions of 
R(Be-O). The water molecule 
is linear. The zero of the 
energy scale corresponds to 
the Be2+H20 asymptote with 
water in the experimental 
(bent) geometry 
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The ground state, at bonding distances is stabilised by charge transfer, 
involving not only the a(al), but also the p(b]) orbitals: this is shown by the 
contribution of the Be ÷(2P) H20 ÷ (.y2B1) diabatic state to the ground adiabatic 
wavefunction. Considering the diabatic potential, instead of the adiabatic one, 
amounts in a first approximation to neglecting the CT contribution to the 
hydration energy: in this way, we have D e = 128.3 kcal/mol, 18.1 less than the 
adiabatic D e. The energy decomposition scheme applied in Ref. [3] yielded a CT 
term of -21.6 kcal/mol (6-31G* +counterpoise calculation). We repeated the 
single point calculations with 3-21G* geometries [10], using the 6-311G** basis 
set for O and H, but only two s functions for Be; with such a basis set only the 
ls orbital of Be is correctly described, so that no charge transfer can occur. The 
results, shown in Table 2, indicate that CT accounts for 31.3 kcal/mol of the 
binding energy at SCF level, or 34.9 kcal/mol at CIPSI level. 

Consider now the complexation by a second water molecule; quite clearly, it 
cannot transfer as much electronic charge, to the beryllium ion, as the first one, 
and the CT stabilisation energy will be much less. Figure 7 shows the potential 
energy curve for the approach of a second water, while the first one is held fixed 
at a Be~) distance of 3 a.u. All the atoms are on the same plane, O-Be-O on the 
same line, with C2~ symmetry; CIPSI calculations for a single state have been 
performed. As expected, both the SCF and the CIPSI curves are much closer to 
the diabatic curve for the single water case, than to the adiabatic one. The 
second hydration energy was 122.4kcal/mol (SCF) or 123.3 (CIPSI). The 
difference, with respect to the single water D e ,  is 23.1 kcal/mol, including about 
4 kcal/mol of water-water repulsion [10]. Again, single point calculations based 
on 3-21G* geometries give almost identical results: D e = 123.0 kcal/mol (SCF) 
and 122.9 (CIPSI). With only two s functions on Be (no charge transfer allowed) 
we obtain D e = 104.2 kcal/mol (SCF) and 98.7 (CIPSI). The CT contribution to 
the binding energy is 11-12 kcal/mol less than in the single water case. Previous 
determinations of one and two waters D e gave differences in the same order of 
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Fig. 7. Ground  state adiabatic 
energy (CIPSI-MPB) for the 
[Be(H20)2] 2+ system. Planar 
C2v arrangement,  water 
molecules in the experimental 
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distance is fixed (3 a.u.), the 
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curves with only one water 
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comparison. The zero of the 
energy scale corresponds to 
the [BeH20] 2+ + H 2 0  or 
Be 2+ + H 2 0  asymptotes 
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magnitude as ours: ADe = 24.4 kcal/mol (3-21G*, MP3 [10]), ADe = 15.2 kcal/ 
mol (DZ, SCF [8]). In particular, the DZ-SCF calculations of Refs. [7-9], on 
which the Molecular Dynamics simulations were based, give a second hydration 
energy of 120.4 kcal/mol, almost identical to ours: the weakness of the basis set 
they used, probably causing an underestimate of CT effects, becomes a minor 
source of error in the two waters case. 

Polarisation of the H20 molecules also plays an important role in the 
non-additivity of pair potentials. We can evaluate its contribution as follows. Let 
us call gBe the electric field generated by the Be 2+ cation at the location of a 
water ligand, and 8H:o the electric field generated by the other water molecule at 
the same location; ~'°Be and ¢H2o are parallel and opposite in sign, with 
Ig,e~ >> IgH2OI. The polarisation energy for one water molecule is proportional to 
-g~e ,  while that of two water molecules is proportional to 
- -  2(Or°Be -~ ~ H 2 0 ) 2  ~___ - -  28~e - 4gBegH2o. Thus, the polarisation contribution to 
the non-additivity is a fraction 41gH2o/gBd of the polarisation energy for the 
single water case, which is 81.7 kcal/mol according to the energy decomposition 
scheme of Ref. [3]. Given a beryllium-water distance of 3 a.u. and a water dipole 
of 0.736 a.u., we evaluate a contribution of 10 kcal/mol, roughly half of the total 
non-additivity and about the same as the CT contribution (notice that this 
simplified charge-dipole model is quite consistent with the computed electrostatic 
energy for the [BeH20] 2+ complex [3] and with the water-water repulsion energy 
[10]). Considering that charge transfer influences the electric field to a large 
extent, it is quite apparent that a cross effect of CT and polarisation will also be 
an important source of non-additivity. 

The one and two waters potential energy curves differ dramatically at large 
Be-O distances: in fact the lowest A1 CT state lies higher than the Be2+(H20)2 
state, provided that one of the water molecules complexes the beryllium cation 
and stabilises its double charge. In this region, the similarity between the two 
waters adiabatic curve, and the single water diabatic one, is striking (see Fig. 7). 

4. Conclusions 

This work shows the complexity of the ground and lowest excited potential 
energy surfaces of one of the simplest systems constituted by a doubly charged 
cation and a ligand. One should consider that the number of low-lying charge 
transfer states is larger with transition metals, because of the crowding of many 
atomic terms in a range of a few eV. Triply charged cations, because of their 
large electron affinities (third IP), will cause the curve crossings and avoided 
crossings between CT and non CT states to occur at lower energies and closer 
metal-ligand distances than in [BeH20] 2+. Therefore, such featues will influence 
more deeply the properties of solutions and the condensed state chemistry, in 
particular redox reactions. The determination of quasi-diabatic states is shown to 
be a valuable tool to disentangle such complex situations, and to help in building 
up simplified models. 

Charge transfer and water polarisation are key features in establishing the 
energetics of metaMigand complexes, and in particular the non-additivity of 
interaction potentials: notice, however, that CT and polarisation effects cannot 
be perfectly separated and quantified. The present results show that the potential 
energy curves for the complexation of Be 2+ with the first and with the second 
water molecule are widely different, mainly because of a shift in the relative 
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energies of  CT and non CT states; addition of  more water molecules is expected 
to cause relatively minor changes. The true adiabatic potential for a beryllium 
ion + single water is dramatically inadequate to represent the reality of  solutions, 
especially in the long-range, repulsive region. Actually, the pair potentials 
formerly used in simulations [7, 9], being obtained from closed shell SCF 
calculations, cannot reproduce the avoided crossings with CT states: they are 
qualitatively similar to those here shown for the two waters case. All these 
considerations point to the use of  effective pair potentials in simulations of  
cation-ligand systems: this is probably the best way to overcome the non-additiv- 
ity problem, without resorting to many-body terms. Effective pair potentials 
suited to simulate aqueous solutions should be obtained from calculations with 
two, or perhaps more, water ligands, as done in this work. Another way to 
determine an effective potential is to apply a general treatment of  the solvent 
effect, such as the continuum dielectric model [26], to the cation-single ligand 
subsystem. 
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